CSC311 Homework 4

Eric Zhu

24/11/2020

Contents

Question 1: 2
Part A 2
Part B: 2
Discussion of underflow/overflow: 2
Question 2: 3
Part A: 3
Part B: 3
Part C: 3
Question 3: 4
Part A: 4
Part B: 4
Part C: 5

Question 1:

Part A:

$\mathrm{a}=\mathrm{np} . \operatorname{array}([-5000000.0,-1010101010101,-650000])$
b $=$ np.array ([10000000, 5000000, 6500000] $)$

Part B:

Proof:

We want to prove that:

$$
\log \left(\sum_{i=0}^{k} \exp \left(a_{i}\right)\right)=\log \left(\sum_{i=0}^{k} \exp \left(a_{i}-\max _{j=0}^{k} a_{j}\right)\right)+\max _{j=0}^{k} a_{j}
$$

First we examine the left hand side of the equation above:

$$
\log \left(\sum_{i=0}^{k} \exp \left(a_{i}-\max _{j=0}^{k} a_{j}\right)\right)+\max _{j=0}^{k} a_{j}
$$

Applying the exponent and logarithm rules, we get:

$$
\begin{aligned}
\log \left(\sum_{i=0}^{k} \exp \left(a_{i}-\max _{j=0}^{k} a_{j}\right)\right)+\max _{j=0}^{k} a_{j} & =\log \left(\sum_{i=0}^{k} \frac{\exp \left(a_{i}\right)}{\exp \left(\max _{j=0}^{k} a_{j}\right)}+\max _{j=0}^{k} a_{j}\right. \\
& =\log \left(\sum_{i=0}^{k} \exp \left(a_{i}\right)\right)-\log \left(\exp \left(\max _{j=0}^{k} a_{j}\right)\right)+\max _{j=0}^{k} a_{j} \\
& =\log \left(\sum_{i=0}^{k} \exp \left(a_{i}\right)\right)-\max _{j=0}^{k} a_{j}+\max _{j=0}^{k} a_{j} \\
& =\log \left(\sum_{i=0}^{k} \exp \left(a_{i}\right)\right)
\end{aligned}
$$

Thus we have shown what we set out to prove.

Discussion of underflow/overflow:

Using the numerically stable version of logsumexp, we avoid overflow as the largest possible exponent is 0 , and $\exp (0)=1$ so we have at most $\log (k)$ (given k classes) for the \log term, not inf. Conversely, we avoid underflow because supposing we have the largest possible difference of $a_{i}-\max _{j=0}^{k} a_{j}$, we find that $\left.\exp \left(a_{i}-\max _{j=0}^{k} a_{j}\right)\right)$ is possibly a really small positive number, and as such, the \log of a small positive number (taking into considering floating point restrictions) is simply 0 but we add back on the max of a_{i} 's, so we get an approximation of the logsumexp, not -inf.

Question 2:

Part A:
Average conditional log-likelihood (train): -0.12462443666862973
Average conditional log-likelihood (test): -0.19667320325525475
Part B:
Accuracy (train): 0.9814285714285714
Accuracy (test): 0.97275
Part C:

Question 3:

Part A:

We wish to derive the PDF of the posterior distribution, $p(\boldsymbol{\theta} \mid D)$.
Using Bayes rules we rewrite $p(\boldsymbol{\theta} \mid D)$ as $\frac{p(D \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(D)}$. Since $p(D)$ can be considered as a normalizing constant, we will calculate $p(D \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})$ instead. Thus we have:

$$
p(\boldsymbol{\theta} \mid D) \propto p(D \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})
$$

As we assume that the samples in D are i.i.d, we have that $p(D \mid \boldsymbol{\theta})=p\left(x^{(1)} \mid \boldsymbol{\theta}\right) p\left(x^{(2)} \mid \boldsymbol{\theta}\right) \ldots p\left(x^{(N)} \mid \boldsymbol{\theta}\right)=$ $\prod_{i=1}^{N} \prod_{k=1}^{K} \theta_{k}^{x_{k}}$. Since a datapoint (sample) can only belong to 1 class, we have $\prod_{i=1}^{N} \theta_{k}^{x_{k}^{(i)}}$ will be exactly $\theta_{k}^{N_{k}}$, i.e., the value of θ for class k raised to the counts of samples belonging to class k in the dataset.To clarify, we are able to write this as $x_{k}=1$ if and only if k is the correct class for x (otherwise $x_{k}=0$) and θ_{k} is raised to the power of x_{k}. Thus, we can write $p(D \mid \boldsymbol{\theta})$ as:

$$
p(D \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{N_{k}}
$$

Next, substituting in the definition of $p(\boldsymbol{\theta})$ and $\prod_{k=1}^{K} \theta_{k}^{N_{k}}$ for $p(D \mid \boldsymbol{\theta})$, we have:

$$
p(\boldsymbol{\theta} \mid D) \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot p(D \mid \boldsymbol{\theta})
$$

It follows that:

$$
\begin{aligned}
\prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot p(D \mid \boldsymbol{\theta}) & \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}} \cdot\left(\theta_{1}^{a_{1}-1} \theta_{2}^{a_{2}-1} \theta_{3}^{a_{3}-1} \ldots \theta_{K}^{a_{K}-1}\right) \\
& =\prod_{k=1}^{K} \theta_{k}^{N_{k}} \prod_{k=1}^{K} \theta_{k}^{a_{k}-1} \\
& =\prod_{k=1}^{K} \theta_{k}^{N_{k}} \theta_{k}^{a_{k}-1} \\
& =\prod_{k=1}^{K} \theta_{k}^{N_{k}+a_{k}-1}
\end{aligned}
$$

Thus, we have the PDF of the posterior distribution to be $\prod_{k=1}^{K} \theta_{k}^{N_{k}+a_{k}-1}$, which means $\boldsymbol{\theta}$ given the data D is Dirichlet distributed with parameters $\left(N_{1}+a_{1}, N_{2}+a_{2}, N_{3}+a_{3}, \ldots, N_{K}+a_{K}\right)$.

Part B:

We want to derive the MAP estimator for $\boldsymbol{\theta}$. Thus, we will start by considering the posterior distribution we derived in part A, i.e., $p(\boldsymbol{\theta} \mid D)=\prod_{k=1}^{K} \theta_{k}^{N_{k}+a_{k}-1}$. Then we define the log-likelihood function as $l(\boldsymbol{\theta})=$ $\log (p(\boldsymbol{\theta} \mid D))=\sum_{k=1}^{K}\left(N_{k}+a_{k}-1\right)\left(\log \left(\theta_{k}\right)\right)$.
To derive the MAP, we want to set $\partial l(\boldsymbol{\theta}) / \partial \theta_{k}=0$, but notice that the log-likelihood function only has one term after differentiation, i.e., $\frac{N_{k}+a_{k}-1}{\theta_{k}}$ because the other linear terms of the log-likelihood function such as $\left(N_{1}+a_{1}-1\right) \log \left(\theta_{1}\right)$ are constants.

Thus, we will use the Lagrangian method for constrained optimization. Here, our constraint is $\sum_{k} \theta_{k}=1$. We will therefore optimize $l(\boldsymbol{\theta})-\lambda\left(\sum_{k} \theta_{k}\right)$. Taking the partial derivative of that function with respect to θ_{k} (and set it to 0), we get:

$$
\frac{N_{k}+a_{k}-1}{\theta_{k}}-\lambda=0 \Longleftrightarrow \frac{N_{k}+a_{k}-1}{\theta_{k}}=\lambda
$$

We now need to solve for our Lagrange multiplier (lambda). We do so by substituting in $\frac{N_{k}+a_{k}-1}{\lambda}$ for θ_{k} into our constraint. We arrive at the equation:

$$
\sum_{k} \frac{N_{k}+a_{k}-1}{\lambda}=1
$$

Multiplying both sides by λ, we get:

$$
\sum_{k} N_{k}+a_{k}-1=\lambda
$$

Substituting in this value of lambda into our equation from above, we arrive at $\hat{\theta_{k}}$:

$$
\hat{\theta_{k}}=\frac{N_{k}+a_{k}-1}{\sum_{k}\left(N_{k}+a_{k}-1\right)}
$$

Part C:

We start with $p\left(\mathbf{x}^{(N+1)} \mid D\right)=\int p\left(\mathbf{x}^{(N+1)} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta} \mid D) d \boldsymbol{\theta}$. And we wish to find the probability of $\mathbf{x}^{(N+1)}$ being class k, i.e, $p\left(x_{k}^{(N+1)} \mid D\right)=\int p\left(x_{k}^{(N+1)} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta} \mid D) d \boldsymbol{\theta}$. From part A, we know that because $\mathbf{x}^{(N+1)}$ can only be one class (and $\mathbf{x}^{(N+1)}$ is only 1 sample), we have that $p\left(x_{k} \mid \boldsymbol{\theta}\right)=\theta_{k}$. Thus our integral becomes: $\int \theta_{k} p(\boldsymbol{\theta} \mid D) d \boldsymbol{\theta}$, and we realize that we have the definition of expectation, i.e., $\mathbb{E}\left[\theta_{k} \mid D\right]$. By the hint we have $\mathbb{E}\left[\theta_{k} \mid D\right]=\frac{N_{k}+a_{k}}{\sum_{k^{\prime}}\left(N_{k}^{\prime}+a_{k}^{\prime}\right)}$ as $\boldsymbol{\theta} \sim \operatorname{Dirichlet}\left(N_{1}+a_{1}, N_{2}+a_{2}, \ldots, N_{k}+a_{k}\right)$, which we derived in part A.

