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Question 1:
Part A:
a = np.array([-5000000.0, -1010101010101, -650000])

b = np.array([10000000, 5000000, 6500000])

Part B:
Proof:

We want to prove that:

log(
k∑
i=0

exp(ai)) = log(
k∑
i=0

exp(ai −maxkj=0aj)) + maxkj=0aj

First we examine the left hand side of the equation above:

log(
k∑
i=0

exp(ai −maxkj=0aj)) + maxkj=0aj

Applying the exponent and logarithm rules, we get:

log(
k∑
i=0

exp(ai −maxkj=0aj)) + maxkj=0aj = log(
k∑
i=0

exp(ai)
exp(maxkj=0aj)

+ maxkj=0aj

= log(
k∑
i=0

exp(ai))− log(exp(maxkj=0aj)) + maxkj=0aj

= log(
k∑
i=0

exp(ai))−maxkj=0aj + maxkj=0aj

= log(
k∑
i=0

exp(ai))

Thus we have shown what we set out to prove.

�

Discussion of underflow/overflow:

Using the numerically stable version of logsumexp, we avoid overflow as the largest possible exponent is
0, and exp(0) = 1 so we have at most log(k) (given k classes) for the log term, not inf. Conversely, we
avoid underflow because supposing we have the largest possible difference of ai −maxkj=0aj , we find that
exp(ai−maxkj=0aj)) is possibly a really small positive number, and as such, the log of a small positive number
(taking into considering floating point restrictions) is simply 0 but we add back on the max of ai’s, so we get
an approximation of the logsumexp, not -inf.

2



Question 2:
Part A:
Average conditional log-likelihood (train): -0.12462443666862973

Average conditional log-likelihood (test): -0.19667320325525475

Part B:
Accuracy (train): 0.9814285714285714

Accuracy (test): 0.97275

Part C:
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Question 3:
Part A:
We wish to derive the PDF of the posterior distribution, p(θ|D).

Using Bayes rules we rewrite p(θ|D) as p(D|θ)·p(θ)
p(D) . Since p(D) can be considered as a normalizing constant,

we will calculate p(D|θ) · p(θ) instead. Thus we have:

p(θ|D) ∝ p(D|θ) · p(θ)

As we assume that the samples in D are i.i.d, we have that p(D|θ) = p(x(1)|θ)p(x(2)|θ)...p(x(N)|θ) =∏N
i=1

∏K
k=1 θ

xk

k . Since a datapoint (sample) can only belong to 1 class, we have
∏N
i=1 θ

x
(i)
k

k will be exactly
θNk

k , i.e., the value of θ for class k raised to the counts of samples belonging to class k in the dataset.To
clarify, we are able to write this as xk = 1 if and only if k is the correct class for x (otherwise xk = 0) and θk
is raised to the power of xk. Thus, we can write p(D|θ) as:

p(D|θ) =
K∏
k=1

θNk

k

Next, substituting in the definition of p(θ) and
∏K
k=1 θ

Nk

k for p(D|θ), we have:

p(θ|D) ∝
K∏
k=1

θNk

k · p(D|θ)

It follows that:

K∏
k=1

θNk

k · p(D|θ) ∝
K∏
k=1

θNk

k · (θ
a1−1
1 θa2−1

2 θa3−1
3 ...θaK−1

K )

=
K∏
k=1

θNk

k

K∏
k=1

θak−1
k

=
K∏
k=1

θNk

k θak−1
k

=
K∏
k=1

θNk+ak−1
k

Thus, we have the PDF of the posterior distribution to be
∏K
k=1 θ

Nk+ak−1
k , which means θ given the data D

is Dirichlet distributed with parameters (N1 + a1, N2 + a2, N3 + a3, ..., NK + aK).

Part B:
We want to derive the MAP estimator for θ. Thus, we will start by considering the posterior distribution
we derived in part A, i.e., p(θ|D) =

∏K
k=1 θ

Nk+ak−1
k . Then we define the log-likelihood function as l(θ) =

log(p(θ|D)) =
∑K
k=1(Nk + ak − 1)(log(θk)).

To derive the MAP, we want to set ∂l(θ)/∂θk = 0, but notice that the log-likelihood function only has one
term after differentiation, i.e., Nk+ak−1

θk
because the other linear terms of the log-likelihood function such as

(N1 + a1 − 1)log(θ1) are constants.
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Thus, we will use the Lagrangian method for constrained optimization. Here, our constraint is
∑
k θk = 1.

We will therefore optimize l(θ)− λ(
∑
k θk). Taking the partial derivative of that function with respect to θk

(and set it to 0), we get:

Nk + ak − 1
θk

− λ = 0 ⇐⇒ Nk + ak − 1
θk

= λ

We now need to solve for our Lagrange multiplier (lambda). We do so by substituting in Nk+ak−1
λ for θk into

our constraint. We arrive at the equation:

∑
k

Nk + ak − 1
λ

= 1

Multiplying both sides by λ, we get:

∑
k

Nk + ak − 1 = λ

Substituting in this value of lambda into our equation from above, we arrive at θ̂k:

θ̂k = Nk + ak − 1∑
k(Nk + ak − 1)

Part C:
We start with p(x(N+1)|D) =

∫
p(x(N+1)|θ)p(θ|D)dθ. And we wish to find the probability of x(N+1)

being class k, i.e, p(x(N+1)
k |D) =

∫
p(x(N+1)

k |θ)p(θ|D)dθ. From part A, we know that because x(N+1) can
only be one class (and x(N+1) is only 1 sample), we have that p(xk|θ) = θk. Thus our integral becomes:∫
θkp(θ|D)dθ, and we realize that we have the definition of expectation, i.e., E[θk|D]. By the hint we have

E[θk|D] = Nk+ak∑
k′ (N ′

k
+a′

k
)
as θ ∼ Dirichlet(N1 + a1, N2 + a2, ..., Nk + ak), which we derived in part A.
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