CSC311 Homework 4

Eric Zhu
24/11,/2020
Contents
Question 1:
Part A: o
Part B: . . e e
Discussion of underflow/overflow: . . . . . . . ... Lo Lo

Part A: . .

Part A: .



Question 1:

Part A:

a = np.array([-5000000.0, -1010101010101, -650000])
b = np.array([10000000, 5000000, 6500000])

Part B:

Proof:

We want to prove that:

log(z exp(a;)) = log( Zexp P — max —0@;j)) —|—1naxk 0@

First we examine the left hand side of the equation above:

log( Zexp maxj —0@5)) —l—max?zoaj

Applying the exponent and logarithm rules, we get:
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= log(z exp(a;)) — 1og(exp(max§:0aj)) + max?zoaj
= log( Zexp (ai)) max —oa; + max’c —0Q;
— 1og(3 exp(on)
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Thus we have shown what we set out to prove.

Discussion of underflow/overflow:

Using the numerically stable version of logsumexp, we avoid overflow as the largest possible exponent is
0, and exp(0) = 1 so we have at most log(k) (given k classes) for the log term, not inf. Conversely, we
avoid underflow because supposing we have the largest possible difference of a; — maxé?:oaj, we find that
exp(a; — maxg?:oaj)) is possibly a really small positive number, and as such, the log of a small positive number
(taking into considering floating point restrictions) is simply 0 but we add back on the max of a;’s, so we get
an approximation of the logsumexp, not -inf.



Question 2:

Part A:
Average conditional log-likelihood (train): -0.12462443666862973
Average conditional log-likelihood (test): -0.19667320325525475

Part B:
Accuracy (train): 0.9814285714285714
Accuracy (test): 0.97275

Part C:

Digit: 0 Digit: 1 Digit: 2 Digit: 3 Digit: 4

Digit: 5




Question 3:

Part A:

We wish to derive the PDF of the posterior distribution, p(6|D).
Using Bayes rules we rewrite p(6|D) as M Since p(D) can be considered as a normalizing constant,

we will calculate p(D|0) - p(0) instead. Thus We have:

p(6|D) x p(D|6) - p(6)
As we assume that the samples in D are i.i.d, we have that p(D|@) = p(z™)|0)p(z |0) p(zM)|9) =
va 1 Hle 0,*. Since a datapoint (sample) can only belong to 1 class, we have Hi:l Hk’“ will be exactly
QN", i.e., the value of 0 for class k raised to the counts of samples belonging to class k in the dataset.To

clarify, we are able to write this as z;, = 1 if and only if k is the correct class for x (otherwise z = 0) and 0y,
is raised to the power of xj. Thus, we can write p(D|0) as

K

p(DI0) = [T 05"

k=1
Next, substituting in the definition of p(8) and Hle Hlivk for p(D|0), we have:

K
p(8|D) < [ 05" - p(DI6)
k=1
It follows that:
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Thus, we have the PDF of the posterior distribution to be H,le O,ICV’“J”““A, which means @ given the data D
is Dirichlet distributed with parameters (N7 + a1, Na + ag, N3 + a3, ..., Ng + ax).

Part B:

We want to derive the MAP estimator for 8. Thus, we will start by considering the posterior distribution
we derived in part A, i.e., p(8|D) = Hszl 0,]:”‘+“’€_1. Then we define the log-likelihood function as 1(0) =

log(p(8] D)) = Y4y (Ni + ay, — 1) (log(6r))-

To derive the MAP, we want to set 91(0)/90; = 0, but notice that the log-likelihood function only has one

term after differentiation, i.e., N’“%‘;’fl because the other linear terms of the log-likelihood function such as

(N1 + a1 — 1)log(6y) are constants.



Thus, we will use the Lagrangian method for constrained optimization. Here, our constraint is ), 0 = 1.
We will therefore optimize 1(0) — A(3_,, 6i). Taking the partial derivative of that function with respect to 6y,
(and set it to 0), we get:

Y —1 N, —1
Mevap =1 o Meta—l

A
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We now need to solve for our Lagrange multiplier (lambda). We do so by substituting in % for 6, into
our constraint. We arrive at the equation:

7A =
k

Multiplying both sides by A, we get:
Z Np+ap—1=2A\
k
Substituting in this value of lambda into our equation from above, we arrive at Or:

QA— N +ap—1
f (N a - 1)

Part C:

We start with p(x(V*D|D) = [p(xN+Y|0)p(0|D)d6. And we wish to find the probability of x(V+1)
being class k, i.e, p(x](gN+1)|D) = fp(xéN+1)|0)p(0\D)d0. From part A, we know that because xV+1) can
only be one class (and x(N*1 is only 1 sample), we have that p(z;|@) = 6. Thus our integral becomes:
J 0xp(6|D)dB, and we realize that we have the definition of expectation, i.e., E[f;|D]. By the hint we have

E[6x|D] = % as 0 ~ Dirichlet(Ny + a1, No + ag, ..., N, + ag), which we derived in part A.
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