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Question 1:

Part a:
Proof:
We want to prove that err, = 1.

First we will rewrite err} as:

;o wil{h(xD) £ t}
err, = ~
Dim1 Wi
/
_ ZﬁiE“’ (By hint 2)
Dim1 Wi
wgexp(—aythy (x®
_ 2icr Wiexp(—at ™V hy (x™)) (By the definition of w?)

Zz‘l\; w;
— > icp wiexp(—(0.5 - ZOQ%)t(i)ht(x(i)))

= N
D i W

(By the definition of «)

From ZiGE w;exp(—(0.5- Zlvog lelf:" D e (x(D))

Zi:l i . . .
consider in E because for all elements in E, we either have that ¢t = 1 and h, (x(’)) =—1ort® =—1and
he(x() = 1 by definition of set E. To further explain, E is the set of indicies such that T{h;(x(")) # t} =1,

s0 hy(x(D) # t, and both t and hy(x(?) are either —1,1 by definition. We will call this fact 1. It follows that:

, we realize that t(Wh,(x(?)) is necessarily -1 for all indicies we

Y icp wiexp(—0.5 - lOgle::t” 1) Y e wiexp((0.5 - loglef:,”) -1)
N —
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We rewrite ) ;. pe w; as:

Z w; = Z wiexp(—aytD hy (x))

icEe icEe
= Z exp(—ay)w; (By "Note 1" below)
ieEe
= exp(— Z w;
ZEEL
w;
=exp(—ay) - ( ;ift : Z w;) (Rewriting hint 2)

Note 1: We know that for all i € E°, we have that t()h(x(")) = 1 by the definition of E° (recall that E° is
the set of indicies such that I{h;(x(") # ¢} = 0). In other words, E° contains all the indicies where h; = t.

) (Z’LEE Wi

Next, taking ;. pe w; = exp(—au) - (Fi52— — > ,cp wi), we have that:
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= (By fact 1)
72;5 - =Y iepwi +exp(ay) Yo pwiexp(ay - 1)

_ Y icr wiexp(2 - ay)
Lt ™ 5wy + exp(on) Sy p wiexplan)
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= (By the definition of «y)
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We have therefore shown what we wanted to prove.

Part b:
Proof:

To begin, note that ¢, oy is some fixed quantity from the problem, along with x(¥, which is some training
example, and t() is the associated target.

We want to prove that the two expressions for w} are proportional up to a constant factor_, i.e., we wish to
prove the statement that 3k € R, k - w; - exp(—aut D hy(xV)) = w; - exp(2aI{hy(xD)) # t0}).

Thus, let k = e®t. Tt follows that k- w; - exp(—ast D hy(x()) is exactly w; - eor—at (V) w; -exp{oy —
Oétt(i)ht (X(Z))}

Note that:

. . . . 1 . .
w; - exp{ay — artDhy(xD)} = w; - exp{a;(1 — tDhy(xD))} = w; - exp{Zat(§(1 — tDhy (xD))}

With the rewritten expression, w;-ezp{2a;(3(1—tWh(x()))}, we notice that £ (1—th,(x?)) is equivalent to
the 0-1 loss (I{h¢(x®) # t(V}). Substituting in T{h.(x?)) # ¢}, we arrive at w; - exp(2a:1{h;(xD)) #£ tO1),
which is exactly what we wanted to show.



Question 2:

Part a:

To begin, we will define our log-likelihood function using the joint probability distribution given in the
problem:

N N 784
Zlog x,clf, 7)) = Z (log(p(c|m)) + log( Hp )|c ic)))
i=1

(log(p(c|m))) +ZzOgH #]e,050)))

I
'Mz I

i=1 =1

N N 784 '
= Z(log (c|m))) + Z Zlog (Z)|c, b;c)))

=1 =1 j5=1

N N 784 e e
:Z(log (c|m)) +Z Zlog (1—0.) %))

=1 =1 j=1

N N 784 . L
=D (og(p(c|m))) + (Y log(¥j ) +log((1 — i)'~ )

=1 =1 j=1

Now with our log-likelihood, {(#) (we want to find the likelihoods of both 0, 7 separately), we need to derive
0;c and 7;. We will first derive ;. on the next page.



Finding 9}6:
We begin with the concept of MLE in this context, i.e., we wish to find %ﬁ_c = 0, which will be our maximum.

Recall from above that [(f) = Zi]il(log(p(chr))) + 2521(2;8:41 log(@j-é) +log((1 —0j.)' ~%4)). It follows that
our partial derivative is:

ol I () 1—g®
L1(6) = (> ogplelm) + D (Y log 652 ) +Tog(1 — 030) ) =0
jc jc =1 P i
ol & N MO) L
= 5~ (X Cogp(elm)) + ool )+ og((1 = 0.0 =)
+ log(ﬁgg)) +log((1 — 920)2—90;”))
log(052 ) +log((1 — 05~

20 (4)
+ ..+ 1log(0;] ) +log((1 — ajc)limj )
o) e
+ oo+ log(07552) + Log((1 — Orgac) '~ 7754))) = 0
N
=0+ aWlog(tc) + (1 - )log(1 — ,c) = 0
1=1

zéi) 1-— xy)

— =0
(jS 1ft9jc)

|
KMZ

i=1

e = £)(af (1~ B36) = (0 — 200)) = 0 (By "Note 2°)

I
.MZ

N
Il
—

Thus, we have Zil I(c® = t)(scy)(l —0jc) — (0jc — xg-i)jS)) = 0. Solving for 6}, to find the MLE, we get:

~ SV (e = t)xy)

Note 2: We add the identity function because we wish to only consider the terms where the class label for
the particular pixel is the correct target, i.e, ¢(*) = ¢. Note that ¢ is a label from 1-0f-10 encoded class labels
given by the handout.

Finding 7;:
Again we wish to find 6% = 0. However, note that we are given Z?:O m; = 1, which means we may consider

this a constrained optimization problem. We therefore, wish to optimize [(6) + X - Z?:o Ty

A1(6) +A- 37 )
67@
Since the log-likelihood function is a linear combination of Bernoulli log-likelihood of labels and the Bernoulli
log-likelihood for the features x, we get that as a result of differentiation we are left with:

O(0) +A-37_om) O] log(plelm)) + - 320 )

87Tj a’frj

=0




In other words, we have:

O] log(p(elm)) + A - X0 _o ;) O(X7 log(p(t|m)) + A~ 7o)

879- 87'(]'

Applying the logarithm rules:

O] log(p(tlm) +A- 3] om) A} log(ITj_, 7)) +A- 3o m))

87rj a’ﬂj

A S0 log(my) + X0 m))
871']‘

Finally,

n 9 t; 9 i
AEF 5oy log(my) + 0 355 g m)) i 5 o
87rj " 7Tj
7
PO )
Solving for 7;, we get m; = —<5—~—. Since ¢, is only 1 if and only if image ¢ belongs to target category ¢;
(and else 0), we can write:

SR v
Zﬁj = Z(*f)

j=0 j=1
N 7 N 7 N 1
L LD DARE. LD DAY ¢

3 3 h
- _ 1]‘\]:1 tEZ) — Zi\; téz)... — Zfil tg\lr)
A

Note that there are at most N images, and since each image has a label and tg.i), we know

_Zilt(li)_Zi\r:lty)“‘_Zilt%) _ =N
A

= =-. To further explain, we know that our numerator is exactly
N since each image belongs to a class and as such each image will get assigned 1 exactly once.Adding up N
1’s, we get N. Thus, we find that our lagrange multiplier is —N. Finally, we get that:

N i
R
TN

Part b:

To start we define our likelihood as p(t|x, 0, 7), and so it follows that our log-likelihood is log(p(t|x, 0, 7)) <~
plelmp(xlt.0.m)

log(X:9

oo Plelm)p(x[t,0,7)

We can use the equations provided in the homework to rewrite the log likelihood as:

oo(—_Plelmp(x[t, 0, ) o plelm) TT124 057 (1 — 0;0)' )
NS et b.m) S ) T 20— 00 )

Then we apply the log rules to obtain:



784 9 784

p(elm) T2 02 (1~ 050)' ) . . , )
lo I=_J= <~ log(p(c|m 077 (1—0;.)' %)) —lo clm 077 (1—0;0)' %
g(zgzo(p(cm e 9%(170]46)1_%)) g(p(c] )j|:|1 e (1=05c)" 7)) g(c§:o(p( | )j|:|1 e ( ) )

Further simplifying we get:

784 9 784
log(p(c|m) [ 032(1 = 0,e)' =) —log(D_ plelm) [ [ 052 (1 = 0;0)' )
Jj=1 c=0 j=1
<~
784 9 784
log(p(clm)) + Y (w5l09(85¢) + (1 = 2;)log((1 = 05c))) — log(D_ plelm) [T 052(1 = 6;¢)' =)
=0 j=1

Jj=1

Part c:

Average log-likelihood for MLE is nan due to “divide by zero encountered in log log_likelihood_cat =
np.dot (image, np.log(theta)) + np.dot((1-image),np.log(1l-theta))”. From this error, we see that
we have division by zero due to some 6;. being 0.

Part d:

O] 42 3 ¥4
S e 7 % 9

Part e:

To start, we define our posterior distribution as p(é|c, 7, x), which is proportional to p(8)p(z, c|f, 7). Note
that p(z, c|f, ) is our likelihood function from part a and p(f) ~ Beta(3,3). To derive the MAP estimator
for 6, we need to solve 22 (ché”’x) = Yog(p (géc’ﬂ’x)) = 0. We begin the derivation by defining the log-likelihood

(1(6)):




Deriving the likelihood function [(9):

1(0) = log(p(flc, m,x) Zlog Zp ) ¢l6, )

= log(p(@)) + Z lOQ(P(X(i)a C|67 ﬂ))

784

=log(p +Zl0g (c|m) H V ‘”51))))

= log(63,(1 - 9jc)2)

N 784
+ D og(p(elm)) + 3 _(x;10g(05c)

+ (1 —z;)log((1 - 05¢))))
= log(02- (1—0;.)%)
784

(Beta PDF)

(Definition of p(c|m))

T Z log(me) + Z zjlog(0jc) + (1 — x;)log((1 — b5.))))

Deriving the M AP estimator GMAAP:
We begin by taking the derivative of 1(6):

a1(6) 9 N 784
20 = a0, (log(HJQ-C(l —0;0)%) + Z(Zog 7o) + Z (xjlog(bjc) + (1 —z;)log(1
¢ i=1 j=1
- 2 @ _pFi 2T
- Qoul03.(1.= 0,07 + 3 = (gL - =)
(4) (4)
0 N ) T 1—x;
— ) )+ 2log(1 — 0, I(e® = J_ J
a3, (2oa(03e) + Zog(1L = 030)) + DL = (L = 7=)
N (@ (@)
1 1 < 5 1—=z
=2 +) (e = t)(2 J
(HJC (1- 0]0)) pt ( A Ojc 1—0jc
N (4) (@)
(1—0jc) Ojc i Zj 1z
=2 - )+ I =) (F- - )=0
Oic(1—05.) (1—-6;.)85) P Ojc  1—0j
N () ()
(1—6;c) Ojc (i) z;° l-uz
2 — —+ I(c\"” =t — =
(930(1 930) (1- 9]'6)9]6)) i—1 ( 3 Ojc 1= bjc )
Rearranging, we get this equality
N (#) (&)
(1 —26;c) () 1 -2
-2 = I(c'" =t —
0ic(1—6;c) ; ( A Ojc 1—0;. )

= 0jc))))

(By part 2a and "Note 3")

(By Note 4)



Cancelling out the denominators on both sides we get:

N N
]_ — 29 o i . . i .
22 S = 1= 830 - O~ 20050) = (-2 4650) = ) = (el ~ 030
Jjc Jjc i=1 i=1
It follows that:
N ) ) N ) N ) )
—2+40j = 1 =)z —0;0) = 2+ 4050+ > LD =1)(0;0) = Y _ 1D =1)(z")
=1 =1 =1
Next,
N N N N
~2440;c+ 3 1D = 1)(050) = D L = )(@) = —2440,0+0;. Y 1D = 1) = 31D = t)(2}")
=1 =1 =1 =1

Now solving for 6. by moving -2 to the right hand side of —2 + 46, + 6;. SN I(c® =) = SN () =
t)(x (z)) and factoring out 8., we obtain the MAP estimator for ;. (Orrap):

0rren = s S (e =) (2d)) + 2
MAP — Vjec — X
’ Sy I(et =) +4

Note 3: Using the logic of note 2 from part 2a, we add the identity function before factoring out the
)

2 N
denominator Zi:l I(c® = t)(3 i — 1179 ) because unlike MLE we also have the derivative of the log of the

prior to consider in this case (ag, (109(9]20( —0;c)?).
o

Note 4: We are able to obtain 2(z- — =) 9 ) from 80—((2109(9]5) + 2log(1 — 6;.))) because the partial

derivative of 2log(1 — ;) is negative by the Chaln rule. I did not write it in the derivation for better notional
clarity.

Part f:
Average log-likelihood for MAP is -3.3570631378601683

Training accuracy for MAP is 0.8352166666666667
Test accuracy for MAP is 0.816
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Question 3:

Part a:

True. By the assumptions of naive Bayes, we assume that the pixels x; and x; are conditionally independent.
Here our condition is c.

Part b:

False. Having the pixels be marginally independent of class would mean that knowing the class value, e.g., 0
or 1, would have no effect on our probability of the pixels. Given that the context of the class is the digit and
digits do indeed have unique shapes, the pixels should be marginally dependent.

Part c:

00 W
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