
CSC311 Homework 1

Eric Zhu

30/09/2020

Question 1

Part b

Accuracy plot for the model with the best validation accuracy:

After the 20 observations of models ranging from k = 1 to k = 20, we see that the model with k = 3 produces
the model with the best validation accuracy. After calculating the test accuracy on this model, we get a test
accuracy of: 0.6979591836734694.

Part c

Accuracy plot for the model with the best validation accuracy:

1

From switching the metric from “minkowski” to “cosine”, we get that our accuracy becomes:
0.7938775510204081, with k = 8. We can hypothesize the cause of the increase in accuracy by
considering the example dataset: [‘cat’, ‘bulldozer’, ‘cat cat cat’]. Following a similar process to what we
used in question 1, i.e, preprocessing the dataset using a CountVectorizer and using a distance-like metric,
we’d see that ‘cat cat cat’ would be 2 units away from ‘cat’ (3 instances of ‘cat’ versus just one). However,
clearly, 3 instances of cats are more similar to cat rather than bulldozer So we consider the cosine metric that
calculates the score based on the angle between the data points. Thus, using this metric, we see that ‘cat’
and ‘cat cat cat’ would be very similar since they’d have an angle of 0 between them, i.e, they’re scalar
multiples of the same vector, while there would be some larger angle in between ‘cat cat cat’ and ‘bulldozer’
and similarly between ‘cat’ and ‘bulldozer’. We see that the cosine metric in this example better represents
the similarity between the data points.

Question 2

Part a

We wish to derive the update rules for the regularized cost function: J βreg, given the regularization function
R(w) = λ

2 wTw = λ
2

∑D
j=1 w

2
j and the cost function: 1

2N
∑N
i=1(y(i) − t(i))2.

First we will derive the update rule for wj ,i.e, wj ← wj − α ∂J
∂wj

.

Recall that we may split J βreg into J β(w) and R(w). We will now derive the equation for J β(w):

We start from the linear regression notes:

2

J β(w) = J β(w1, w2, ..., wj , wD, b)

= 1
2N

N∑
i=1

(y(i) − t(i))2

It follows that we can rewrite the above equation in terms of the loss function, i.e:

J β(w) = 1
2N

N∑
i=1

(y(i) − t(i))2

= 1
2N

N∑
i=1
L(y(i), t(i))

Since L(y(i), t(i)) is in terms of w, we will calculate the derivative of L(y(i), t(i)) with respect to wj , i.e,
∂L(y(i),t(i))

∂wj
and apply the chain rule to find the partial derivative of the unregularized cost function w.r.t wj .

Calculating the partial derivative of the loss function with y(i) =
∑D
j=1 wjx

(i)
j + b, we get:

∂L(y(i), t(i))
∂wj

= ∂(y(i) − t(i))2

∂wj

= 2(y(i) − t(i)) · ∂y
(i)

∂wj

Thus, we need to calculate ∂y(i)

∂wj
. Note that since y(i) =

∑D
j=1 wjx

(i)
j + b, we can calculate the ∂y(i)

∂wj
as a linear

combination of weights multiplied with observations as follows:

∂y(i)

∂wj
= ∂

∂wj
(w1x

(i)
1 + w2x

(i)
2 + wjx

(i)
j + ...+ wDx

(i)
D + b) = x

(i)
j

Now, having calculated ∂y(i)

∂wj
= x

(i)
j , we can plug in x(i)

j into ∂L(y(i),t(i))
∂wj

to get:

∂L(y(i), t(i))
∂wj

= 2(y(i) − t(i)) · x(i)
y

Thus, we can plug in our result in the above equation for ∂L(y(i),t(i))
∂wj

into ∂J β(w)
∂wj

to get:

∂J β(w)
∂wj

= 1
N

N∑
i=1

(y(i) − t(i)) · x(i)
y

Having gotten ∂J β(w)
∂wj

, we now derive ∂R(w)
∂wj

as follows:

3

∂R(w)
∂wj

= ∂

∂wj
(1
2

D∑
j=1

βjw
2
j)

= ∂

∂wj
(0.5(β1w

2
1 + β2w

2
2 + βjw

2
j + ...+ βDw

2
D))

= 1
2 · 2 · βjwj = βjwj

Thus, we can now add ∂R(w)
∂wj

to ∂J β(w)
∂wj

, such that ∂J β(w)
∂wj

+ ∂R(w)
∂wj

= ∂J βreg(w)
∂wj

. Expanded, we get:

∂J βreg(w)
∂wj

= ∂J β(w)
∂wj

+ ∂R(w)
∂wj

= 1
N

N∑
i=1

(y(i) − t(i)) · x(i)
y + βjwj

We can therefore write:

wj ← wj − α(1
N

N∑
i=1

(y(i) − t(i)) · x(i)
y + βjwj)

Now we repeat a similar procedure to derive ∂J βreg(w)
∂b . In fact, much of the derivation is copy pasted from

the derivation of the update rules for wj .

Recall that the update rule for b: b← b− α∂J∂b . Additionally, we may split J βreg into J β(w) and R(w). We
will now derive the equation for J β(w):

We start from the linear regression notes:

J β(w) = J β(w1, w2, ..., wj , wD, b)

= 1
2N

N∑
i=1

(y(i) − t(i))2

It follows that we can rewrite the above equation in terms of the loss function, i.e:

J β(w) = 1
2N

N∑
i=1

(y(i) − t(i))2

= 1
2N

N∑
i=1
L(y(i), t(i))

Since L(y(i), t(i)) is in terms of w, we will calculate the derivative of L(y(i), t(i)) with respect to b, i.e,
∂L(y(i),t(i))

∂b and apply the chain rule to find the partial derivative of the unregularized cost function w.r.t b.
Calculating the partial derivative of the loss function with y(i) =

∑D
j=1 wjx

(i)
j + b, we get:

4

∂L(y(i), t(i))
∂b

= ∂(y(i) − t(i))2

∂b

= 2(y(i) − t(i)) · ∂y
(i)

∂b

Thus, we need to calculate ∂y(i)

∂b . Note that since y(i) =
∑D
j=1 wjx

(i)
j + b, we can calculate the ∂y(i)

∂b as a linear
combination of weights multiplied with observations as follows:

∂y(i)

∂b
= ∂

∂b
(w1x

(i)
1 + w2x

(i)
2 + wjx

(i)
j + ...+ wDx

(i)
D + b) = 1

Now, having calculated ∂y(i)

∂b = 1, we can plug in 1 into ∂L(y(i),t(i))
∂b to get:

∂L(y(i), t(i))
∂b

= 2(y(i) − t(i))

Thus, we can plug in our result in the above equation for ∂L(y(i),t(i))
∂b into ∂J β(w)

∂b to get:

∂J β(w)
∂b

= 1
N

N∑
i=1

(y(i) − t(i))

Having gotten ∂J β(w)
∂b , we now derive ∂R(w)

∂b as follows:

∂R(w)
∂b

= ∂

∂b
(1
2

D∑
j=1

βjw
2
j)

= ∂

∂b
(0.5(β1w

2
1 + β2w

2
2 + βjw

2
j + ...+ βDw

2
D))

= 0

Thus, we can now add ∂R(w)
∂b to ∂J β(w)

∂b , such that ∂J β(w)
∂b + ∂R(w)

∂b = ∂J βreg(w)
∂b . Expanded, we get:

∂J βreg(w)
∂b

= ∂J β(w)
∂b

+ ∂R(w)
∂b

= 1
N

N∑
i=1

(y(i) − t(i)) + 0 = 1
N

N∑
i=1

(y(i) − t(i))

We can therefore write:

b← b− α(1
N

N∑
i=1

(y(i) − t(i)))

Combined, we see that our two update rules are:

5

wj ← wj − α(1
N

N∑
i=1

(y(i) − t(i)) · x(i)
y + βjwj)

b← b− α(1
N

N∑
i=1

(y(i) − t(i)))

Based on this update rule, we see that this form of regularization can be called “weight decay” because based
on slide 39 of the week 2 lecture notes, we have that the regularization term here is exactly an L2 regularized
cost, i.e, J + λR. We know this because be have the extra term βjwj . We can therefore set β to be λ, which
therefore decays the weights due to the rearrangement: (1− αβ)wj − α ∂J

∂wj
.

Part b

We will derive the formulas for Ajj′ and cj using the simplified linear model y =
∑D
j=1 wjxj .

First, recall ∂J
β
reg(w)
∂wj

:

∂J βreg(w)
∂wj

= 1
N

N∑
i=1

(y(i) − t(i)) · x(i)
y + βjwj

And then we wish to find ∂J βreg(w)
∂wj

= 0 in the form
∑D
j′=1 Ajj′wj − cj . First we will rewrite the regularized

cost function as:

(1
N

N∑
i=1

x
(i)
j)(

D∑
j′=1

wj′x
(i)
j′ − t(i)) + βjwj

It follows that:

(1
N

N∑
i=1

x
(i)
j)(

D∑
j′=1

wj′x
(i)
j′ − t(i)) + βjwj = 1

N

D∑
j′=1

(
N∑
i=1

x
(i)
j · x

(i)
j′) · wj′ − 1

N

N∑
i=1

x
(i)
j · t

(i) + βjwj

= 0

Since we do not want Ajj′ , cj to be in terms of wj , we will define δj,j′ to be:

δj,j′ =
{

1 j = j′

0 j 6= j′

Next we will expand the terms of 1
N

∑D
j′=1(

∑N
i=1 x

(i)
j · x

(i)
j′) · wj′ and add βjwj :

6

1
N

D∑
j′=1

(
N∑
i=1

x
(i)
j · x

(i)
j′) · wj′ + βjwj = 1

N
((

N∑
i=1

x
(i)
j · x

(i)
1) · w1) + 1

N
((

N∑
i=1

x
(i)
j · x

(i)
2) · w2)

+ ...+ 1
N

((
N∑
i=1

x
(i)
j · x

(i)
j) · wj) + ...+ 1

N
((

N∑
i=1

x
(i)
j · x

(i)
D) · wD) + βjwj

= 1
N

((
N∑
i=1

x
(i)
j · x

(i)
1) · w1) + 1

N
((

N∑
i=1

x
(i)
j · x

(i)
2) · w2)

+ ...+ 1
N

((
N∑
i=1

x
(i)
j · x

(i)
j) · wj) + βjwj + ...+ 1

N
((

N∑
i=1

x
(i)
j · x

(i)
D) · wD)

Since we see that since j′ takes values from 1 to D, we know that some term in the summation, as we have
shown above, will be in terms of j, i.e, j′ = j. Thus, we can write the above summation in terms of δj,j′ :

1
N

D∑
j′=1

(
N∑
i=1

x
(i)
j · x

(i)
j′) · wj′ + βjwj =

D∑
j′=1

((1
N

N∑
i=1

x
(i)
j · x

(i)
j′) + βjδj,j′) · wj′

So we can rewrite the partial derivative of the regularized cost function w.r.t wj as:

1
N

D∑
j′=1

(
N∑
i=1

x
(i)
j · x

(i)
j′) · wj′ − 1

N

N∑
i=1

x
(i)
j · t

(i) + βjwj =
D∑
j′=1

((1
N

N∑
i=1

x
(i)
j · x

(i)
j′) + βjδj,j′) · wj′ + 1

N

N∑
i=1

x
(i)
j · t

(i)

Thus, we see that the two parts of the above equation are
∑D
j′=1 Ajj′wj and cj respectively, i.e,∑D

j′=1 Ajj′wj =
∑D
j′=1((1

N

∑N
i=1 x

(i)
j · x

(i)
j′) + βjδj,j′) · wj′ and c = 1

N

∑N
i=1 x

(i)
j · t(i). Further we see that

Ajj′ = (1
N

∑N
i=1 x

(i)
j · x

(i)
j′) + βjδj,j′ , so we conclude part b.

Part c

Recall from part b that Ajj′ = (1
N

∑N
i=1 x

(i)
j · x

(i)
j′) + βjδj,j′ and that cj = 1

N

∑N
i=1 x

(i)
j · t(i). Vectorized, we

get A = 1
NXTX + diag(β) and cj = 1

NXT t, where β is D-dimensional vector of β values.

Note that we are able to vectorize A as we have done because XTX is P by P matrix (X is N by P), where
P is the dimension of predictors and N is the count of observations/samples. By our linear model y from
the previous parts, we know each predictor has a weight, which implies that P = D, i.e, the dimension of
predictors is the same as the dimension of weights. Since we know β is a D-dimensional vector, diag(β) is a
D by D matrix. So we simply add diag(β) to 1

NXTX.

We know our solution to Aw− c = 0 is Aw = c and so it follows that w = A−1c. We have:

w = (1
N

XTX + diag(β))−1(1
N

XT t)

This concludes part c and question 2.

7

Question 3

We wish to derive the 4 following functions: y, ∂J /∂y, ∂J /∂w, and ∂J /∂b.

From the course notes, we have in vector form y = Xw + b1, where 1 is a D-dimensional vector of 1’s.

Recall that our loss function is L(y, t) = 1− cos(y − t). Component wise, we write our cost function as an
average of our loss function over N observations (samples):

J = 1
N

N∑
i=1
L(y(i), t(i))

Expanded we get:

1
N

N∑
i=1
L(y(i), t(i)) = 1

N
(L(y(1), t(1)) + L(y(2), t(2)) + ...+ L(y(N), t(N)))

Thus, vectorized we get (note that cos(A) is the element-wise cosine function allowed per Piazza):

J = 1
N

(1− cos(Xw + b1− t)) · 1)

We will now find ∂J /∂y:

∂J

∂y = ∂

∂y (1
N

(1− cos(Xw + b1− t)) · 1))

= 1
N
sin(y− t) · ∂y

∂y

= 1
N
sin(y− t)

Next we will find ∂J /∂w:

∂J

∂w = ∂

∂w (1
N

(1− cos(Xw + b1− t)) · 1))

= 1
N
sin(Xw + b1− t)X

Finally, we derive ∂J /∂b:

∂J

∂b
= ∂

∂b
(1
N

(1− cos(Xw + b1− t)) · 1))

= 1
N
sin(Xw + b1− t)1

Since we have derived all 4 equations, we conclude question 3.

8

Question 4

Part c

We will report the training and test errors corresponding to each λ in lambd_seq as a plot shown below
(suggested by Piazza post 137):

Part d

We plot the training error, test error, 5-fold, and 10-fold cross validation error for each value of lambd_seq
as follows:

9

Computationally, we find that for 5-fold cross validation, the minimum CV-error occurs at a value of
λ=0.00095918 with a CV-error of 1.40366076, while for 10-fold cross validation, the minimum CV-error occurs
at a value of λ=0.00106020 with a CV-error of 1.38968784. We see that 10-fold cross validation produces a
smaller minimum error, so we propose that the value of lambda be λ=0.00106020 with a corresponding error
of 1.38968784.

Note that we reported the numerical values above to 8 decimal points (and rounded up) for neatness.

We see that the training error is a slowly monotonically increasing curve. Both 5-fold and 10-fold cross
validation error curves mirror the shape of the test error curve. We also see that the 10 fold validation curve is
an asymptotic lower bound for the 5 fold cross validation error, so it seems that 10-fold performs better than
5-fold cross validation in minimizing errors. Additionally, both error curves generated by k-fold procedures
(5,10 folds) are asymptotic upper bounds on the test curve, i.e, both 5-fold and 10-fold cross validation don’t
seem to perform as well as using just a train and test split as we did in part c. Finally, in every error curve
except for the training error curve, we see an initial fast decrease in error as λ increases, then the error very
slightly increases for increasing λ after λ is sufficiently large.

10

	Question 1
	Part b
	Part c

	Question 2
	Part a
	Part b
	Part c

	Question 3
	Question 4
	Part c
	Part d

