
Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

CSC 165 Problem Set 4

Eric Zhu, Emily Mazor, Kristin Huang

March 28, 2019

1. Printing Multiples

(a)
Proof of the upper bound (Big-oh):

We will prove that
∑n

i=1 d
n

i
e ∈ Θ(n log n)

Using Fact 2, substituting x =
n

i
, we know, d

n

i
e <

n

i
+ 1.

Hence:

n∑
i=1

d
n

i
e <

n∑
i=1

(
n

i
+ 1)

=
n∑

i=1

n

i
+

n∑
i=1

1

= n
n∑

i=1

1

i
+ n

By fact 1, we know:
∑n

i=1

1

i
∈ Θ(log n), so

∑n
i=1d

n

i
e < n log n + n.

We can conclude:
∑n

i=1d
n

i
e ∈ O(n log n)

Proof of the lower bound (Big-omega):

We will prove that
∑n

i=1 d
n

i
e ∈ Ω(n log n).

By fact 2, substituting x =
n

i
, we know,

n

i
≤ d

n

i
e.

1



Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

Hence,

n∑
i=1

d
n

i
e ≥

n∑
i=1

n

i

= n
n∑

i=1

1

i

Additionally, by fact 1, we know
∑n

i=1

1

i
∈ Θ(log n).

Consequently,
∑n

i=1d
n

i
e ≥ n log n and

∑n
i=1d

n

i
e ∈ Ω(n log n)

Since we have that
∑n

i=1d
n

i
e ∈ Ω(n log n) and

∑n
i=1d

n

i
e ∈ O(n log n), it must be

that
∑n

i=1d
n

i
e ∈ Θ(n log n).

(b)
The theta bound of print multiples is Θ(n log n).
This is because we can write out the series of the runtime of each iteration of loop 1

as dne+ d
n

2
e+ d

n

3
e+ ... + d

n

n− 1
e+ d

n

n
e. We deduce this from examining the runtime

of loop 2, which is dependent on d, specifically, multiple goes up by d each iteration.

For example, when d = 1 we have dne, when d = 2 we have d
n

2
e, when d = 3 we have

d
n

3
e, and so on. We can now recognize that series is exactly represented by

∑n
i=1d

n

i
e.

As we’ve proven in part a,
∑n

i=1d
n

i
e ∈ Θ(n log n).

(c)
For a fixed iteration of Loop 1, Loop 3 runs for d iterations, from i = 0 to i = d − 1.
Since each iteration of Loop 3 takes a single step, its total running time is d. Addition-
ally, Loop 3 only runs if d is divisible by 5, and d goes from 0 to n− 1, and d increases

by 1 for each iteration of Loop 1, so d%5 == 0 evaluates to True a total of b
n

5
c times.

For every iteration of Loop 3, it has a total running time of d. Since d changes from 1
to n, and Loop 3 only runs when d%5 == 0, we know that d must be a multiple of 5.

We also know d increments by 5 until the if condition is satisfied b
n

5
c times. Hence we

can write a summation for the total number of times Loop 3 iterates.

Since d%5 == 0 evaluates to True a total of b
n

5
c times, Loop 3 will iterate

∑b
n

5
c

i=1 5

2



Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

times, so line 9 will run
∑b

n

5
c

i=1 5 times. Rewriting the summation we have:

b
n

5
c∑

i=1

5 = 5

b
n

5
c∑

i=1

1

= 5(
b
n

5
c(b

n

5
c+ 1)

2
)

= 5(
(b
n

5
c)2 + b

n

5
c

2
)

=
5

2
((b

n

5
c)2 + b

n

5
c)

We also know from part b that line 5 will run in Θ(n log n). Since n log n is a lower order

term than
5

2
((b

n

5
c)2 + b

n

5
c), we can conclude that a theta bound on print multiples2

is Θ(n2)

2. Varying running times, input families, and worst

case analysis

(a)
To see that the running time for alg is Θ(2n), let n ∈ N and consider the input family,
lst, a List of length n where every element of lst from index 0 to index n−2 (inclusive)
is the number 2, and the element at n− 1 is the number 1.

Hence the input family would look like this, with lst having a length of n:

lst = [2, 2, 2, ... 1]

For the first n − 2 iterations of Loop 1, the if branch executes, and each time the if
branch executes, i increases by 1 and j doubles in value. After n− 2 iterations, i < n
since i = 1 + n− 2 = n− 1.

As j doubles in value each time the if branch executes, by the end of n − 2 itera-
tion of Loop 1, we have that j = 2n−2.

3



Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

After n − 2 iterations, i = n − 1 < n, so the while loop still runs on iteration n − 1.
Now i = n− 1 so lst[i] = lst[n− 1] = 1. Since 1 is divisible by 1, the else branch of the
while loop runs. In the else branch, i doubles to become 2(n − 1), and Loop 2 runs.
Loop 2 runs j times, from k = 0 to k = j − 1, where each iteration takes constant
time. Since j = 2n−2 on the n− 1’s iteration of Loop 1, Loop 2 runs 2n−2 times on the
n− 1’s iteration of Loop 1, with each iteration taking a single step, so the cost for this
iteration is 2n−2.

After the else branch is executed, i becomes 2(n − 1). Given i = 2n − 2, i < n is
only true if n < 2, but since i starts at 1 and the while loop only ran when i < n, where
n is an integer (length of the lst), it is impossible for n < 2. Hence i < n is False and
the while loop stops.

So in total, the Loop 1 first iterated n − 2 times executing the if branch with con-
stant cost, so it cost n−2 for the first n−2 iterations. Then it iterated once, executing
the else branch with a cost of 2n−2. Adding the two together, we get (n − 2) + 2n−2,
which is Θ(2n).

(b)
To see that the running time for alg is Θ(log(n) ·2

√
n), let n ∈ N and consider the input

family, lst, a List of length n that consists of all 2’s from index 0 to index b
√
nc − 2

(inclusive) and all 1’s from index b
√
nc − 1 to n− 1 (inclusive).

Hence, for the first iteration to the b
√
nc− 1’s iteration, i moves from 1 to b

√
nc− 2 so

lst[i] = 2, and since 2 is divisible by 2, the if branch will always run for these iterations.
After b

√
nc − 1 iterations, i = 1 + b

√
nc − 1 = b

√
nc, and j = 2b

√
nc−1.

Now we move on to the index b
√
nc. Since starting from this index, lst[i] = 1, and

since 1 is not divisible by 2, the else branch will always execute. Now we try to find
how many times the else branch will execute, making k = maximum number of times
the else branch executes.

We know the while loop stops when i ≥ n, and after k-iterations, i multiplies by
2k, so i will become b

√
nc · 2k. Hence we want to find k where b

√
nc · 2k ≥ n.

From the definition of the floor, we know
√
n ≥ b

√
nc, so we want to find k where√

n · 2k ≥ n.

4



Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

so, we have:
√
n · 2k ≥ n

⇐⇒
2k ≥

√
n

⇐⇒
log2(

√
n) ≤ k

So Loop 1 terminates when k = dlog2(
√
n)e.

Hence, we know Loop 1 run k = dlog2(
√
n)e times, with each iteration taking constant

time. Loop 2 has j iterations and constant time steps, so it has a cost of j. From the
executions of the if branch, we know j = 2b

√
nc−1, which leads us to the runtime of

the else branch: 2b
√
nc−1 · log(n). The if branch also executes b

√
nc − 1 times. This

concludes a total runtime of 2b
√
nc−1 · log(n) + b

√
nc−1. Since

√
n is a lower order term

than 2
√
n · log(n) we have Θ(2

√
n · log(n)) overall.

(c) Proof.
The initialization lines before the while loop take one step, which is constant time.
At the end of the while loop two groups of events would’ve occurred. Either i and j
increase by 1 and by a factor of 2 respectively, or i increases by a factor of 2 and loop
2 is run, costing a constant amount of operations per iteration for j iterations. The
consequence of this relationship is that j can be considered to be dependent on i, i.e,
we can express j as j = 2i after i = k iterations where k ∈ N. We also know that
the smallest change in i is 1, so that at worst, loop 1 will run n times. Also, in each
iteration, at worst 2k iterations will run. Because we assume n iterations of loop 1, we
can write this as: ∑n−1

i=0 2i = 2n+1 − 1

Alternatively, we have:

2n+1 − 1 = 2n · 2− 1

Since 2n · 2− 1 ∈ O(2n), we have shown what was required. �

5



Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

3. Rearrangements, best-case analysis

(a)
(i)
∀n ∈ N, BCfunc(n) ≤ f(n)
⇐⇒ ∀n ∈ N,min{running time of executing f(x)|x ∈ In}) ≤ f(n)
⇐⇒ ∀n ∈ N,∃x ∈ In, running time of executing f(x) ≤ f(n)

(ii)
∀n ∈ N, BCfunc(n) ≥ f(n)
⇐⇒ ∀n ∈ N,min{running time of executing f(x)|x ∈ In}) ≥ f(n)
⇐⇒ ∀n ∈ N,∀x ∈ In, running time of executing f(x) ≥ f(n)

(b)
Lower Bound

Let n be an arbitrary natural number and let len(lst) = n. In the lower bound of the
best case, the stopping condition of Loop 2 and 3 is always True so Loops 2 and 3
iterate 0 times. Since Loop 2 is in the if-branch and Loop 3 is in the else-branch, either
the if branch or the else branch will execute for each iteration of the for loop. For a
fixed iteration of Loop 1, either line 5 or line 10 will run, and since in the best case the
stopping condition of Loops 2 and 3 is True for every iteration, Loops 2 and 3 iterate 0
times. Since Loop 1 iterates n−2 times, from i = 2 to i = n−1, and since Loops 2 and
3 iterate 0 times for a fixed iteration of Loop 1, the algorithm runs for n− 2 iterations.
Since each iteration takes a single step, we have a lower bound running time of n− 2,
which is Ω(n).

Upper Bound
Let lst be an input family where lst is a List of length n and every element of lst is the
number 1. Then, it is always true that lst[j + 2] = lst[j] since lst[j + 2] = 1 and lst[j]
= 1 for all j. Since the stopping condition of Loop 2 and Loop 3 is j < 0 or lst[j + 2] ≥
lst[j], the stopping condition is always True, so Loop 2 and Loop 3 never execute. Loop
1 runs n − 3 times since i goes from i = 2 to i = n − 1 regardless of the input list,
and so Loop 1 runs for n− 2 iterations. Since Loops 2 and 3 iterate 0 times for a fixed
iteration of Loop 1, and since each iteration of Loop 1 takes a single step, we have an
upper bound running time of n− 2, which is O(n).

Since the runtime is Ω(n) and O(n), we can conclude that the runtime is Θ(n).

6


