CSC 165 Problem Set 4

Eric Zhu, Emily Mazor, Kristin Huang

March 28, 2019

1. Printing Multiples

(a)

Proof of the upper bound (Big-oh):
We will prove that $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \Theta(n \log n)$
Using Fact 2, substituting $x=\frac{n}{i}$, we know, $\left\lceil\frac{n}{i}\right\rceil<\frac{n}{i}+1$.
Hence:

$$
\begin{aligned}
\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil & <\sum_{i=1}^{n}\left(\frac{n}{i}+1\right) \\
& =\sum_{i=1}^{n} \frac{n}{i}+\sum_{i=1}^{n} 1 \\
& =n \sum_{i=1}^{n} \frac{1}{i}+n
\end{aligned}
$$

By fact 1, we know: $\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)$, so $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil<n \log n+n$.
We can conclude: $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \mathcal{O}(n \log n)$
Proof of the lower bound (Big-omega):
We will prove that $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \Omega(n \log n)$.
By fact 2 , substituting $x=\frac{n}{i}$, we know, $\frac{n}{i} \leq\left\lceil\frac{n}{i}\right\rceil$.

Hence,

$$
\begin{aligned}
\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil & \geq \sum_{i=1}^{n} \frac{n}{i} \\
& =n \sum_{i=1}^{n} \frac{1}{i}
\end{aligned}
$$

Additionally, by fact 1 , we know $\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)$.
Consequently, $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \geq n \log n$ and $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \Omega(n \log n)$
Since we have that $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \Omega(n \log n)$ and $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \mathcal{O}(n \log n)$, it must be that $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \Theta(n \log n)$.
(b)

The theta bound of print_multiples is $\Theta(n \log n)$.
This is because we can write out the series of the runtime of each iteration of loop 1 as $\lceil n\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\ldots+\left\lceil\frac{n}{n-1}\right\rceil+\left\lceil\frac{n}{n}\right\rceil$. We deduce this from examining the runtime of loop 2 , which is dependent on d, specifically, multiple goes up by d each iteration. For example, when $d=1$ we have $\lceil n\rceil$, when $\mathrm{d}=2$ we have $\left\lceil\frac{n}{2}\right\rceil$, when $d=3$ we have $\left\lceil\frac{n}{3}\right\rceil$, and so on. We can now recognize that series is exactly represented by $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil$. As we've proven in part a, $\sum_{i=1}^{n}\left\lceil\frac{n}{i}\right\rceil \in \Theta(n \log n)$.
(c)

For a fixed iteration of Loop 1, Loop 3 runs for d iterations, from $i=0$ to $i=d-1$. Since each iteration of Loop 3 takes a single step, its total running time is d. Additionally, Loop 3 only runs if d is divisible by 5 , and d goes from 0 to $n-1$, and d increases by 1 for each iteration of Loop 1 , so $d \% 5=0$ evaluates to True a total of $\left\lfloor\frac{n}{5}\right\rfloor$ times.

For every iteration of Loop 3, it has a total running time of d. Since d changes from 1 to n , and Loop 3 only runs when $d \% 5==0$, we know that d must be a multiple of 5 . We also know d increments by 5 until the if condition is satisfied $\left\lfloor\frac{n}{5}\right\rfloor$ times. Hence we can write a summation for the total number of times Loop 3 iterates.

Since $d \% 5=0$ evaluates to True a total of $\left\lfloor\frac{n}{5}\right\rfloor$ times, Loop 3 will iterate $\sum_{i=1}^{\left\lfloor\frac{n}{5}\right\rfloor} 5$
times, so line 9 will run $\sum_{i=1}^{\left\lfloor\frac{n}{5}\right\rfloor} 5$ times. Rewriting the summation we have:

$$
\begin{aligned}
\sum_{i=1}^{\left\lfloor\frac{n}{5}\right\rfloor} 5 & =5 \sum_{i=1}^{\left\lfloor\frac{n}{5}\right\rfloor} 1 \\
& =5\left(\frac{\left\lfloor\frac{n}{5}\right\rfloor\left(\left\lfloor\frac{n}{5}\right\rfloor+1\right)}{2}\right) \\
& =5\left(\frac{\left(\left\lfloor\frac{n}{5}\right\rfloor\right)^{2}+\left\lfloor\frac{n}{5}\right\rfloor}{2}\right) \\
& =\frac{5}{2}\left(\left(\left\lfloor\frac{n}{5}\right\rfloor\right)^{2}+\left\lfloor\frac{n}{5}\right\rfloor\right)
\end{aligned}
$$

We also know from part b that line 5 will run in $\Theta(n \log n)$. Since $n \log n$ is a lower order term than $\frac{5}{2}\left(\left(\left\lfloor\frac{n}{5}\right\rfloor\right)^{2}+\left\lfloor\frac{n}{5}\right\rfloor\right)$, we can conclude that a theta bound on print multiples2 is $\Theta\left(n^{2}\right)$

2. Varying running times, input families, and worst case analysis

(a)

To see that the running time for alg is $\Theta\left(2^{n}\right)$, let $n \in \mathbb{N}$ and consider the input family, $l s t$, a List of length n where every element of $l s t$ from index 0 to index $n-2$ (inclusive) is the number 2 , and the element at $n-1$ is the number 1 .

Hence the input family would look like this, with $l s t$ having a length of n :

$$
\text { lst }=[2,2,2, \ldots 1]
$$

For the first $n-2$ iterations of Loop 1 , the if branch executes, and each time the if branch executes, i increases by 1 and j doubles in value. After $n-2$ iterations, $i<n$ since $i=1+n-2=n-1$.

As j doubles in value each time the if branch executes, by the end of $n-2$ iteration of Loop 1, we have that $j=2^{n-2}$.

After $n-2$ iterations, $i=n-1<n$, so the while loop still runs on iteration $n-1$. Now $i=n-1$ so $\operatorname{lst}[i]=\operatorname{lst}[n-1]=1$. Since 1 is divisible by 1 , the else branch of the while loop runs. In the else branch, i doubles to become $2(n-1)$, and Loop 2 runs. Loop 2 runs j times, from $k=0$ to $k=j-1$, where each iteration takes constant time. Since $j=2^{n-2}$ on the $n-1$'s iteration of Loop 1, Loop 2 runs 2^{n-2} times on the $n-1$'s iteration of Loop 1, with each iteration taking a single step, so the cost for this iteration is 2^{n-2}.

After the else branch is executed, i becomes $2(n-1)$. Given $i=2 n-2, i<n$ is only true if $n<2$, but since i starts at 1 and the while loop only ran when $i<n$, where n is an integer (length of the lst), it is impossible for $n<2$. Hence $i<n$ is False and the while loop stops.

So in total, the Loop 1 first iterated $n-2$ times executing the if branch with constant cost, so it cost $n-2$ for the first $n-2$ iterations. Then it iterated once, executing the else branch with a cost of 2^{n-2}. Adding the two together, we get $(n-2)+2^{n-2}$, which is $\Theta\left(2^{n}\right)$.
(b)

To see that the running time for alg is $\Theta\left(\log (n) \cdot 2^{\sqrt{n}}\right)$, let $n \in \mathbb{N}$ and consider the input family, lst, a List of length n that consists of all 2's from index 0 to index $\lfloor\sqrt{n}\rfloor-2$ (inclusive) and all 1's from index $\lfloor\sqrt{n}\rfloor-1$ to $n-1$ (inclusive).

Hence, for the first iteration to the $\lfloor\sqrt{n}\rfloor-1$'s iteration, i moves from 1 to $\lfloor\sqrt{n}\rfloor-2$ so $l s t[i]=2$, and since 2 is divisible by 2 , the if branch will always run for these iterations. After $\lfloor\sqrt{n}\rfloor-1$ iterations, $i=1+\lfloor\sqrt{n}\rfloor-1=\lfloor\sqrt{n}\rfloor$, and $\mathrm{j}=2^{\lfloor\sqrt{n}\rfloor-1}$.

Now we move on to the index $\lfloor\sqrt{n}\rfloor$. Since starting from this index, lst $[i]=1$, and since 1 is not divisible by 2 , the else branch will always execute. Now we try to find how many times the else branch will execute, making $\mathrm{k}=$ maximum number of times the else branch executes.

We know the while loop stops when $i \geq n$, and after k-iterations, i multiplies by 2^{k}, so i will become $\lfloor\sqrt{n}\rfloor \cdot 2^{k}$. Hence we want to find k where $\lfloor\sqrt{n}\rfloor \cdot 2^{k} \geq n$.

From the definition of the floor, we know $\sqrt{n} \geq\lfloor\sqrt{n}\rfloor$, so we want to find k where $\sqrt{n} \cdot 2^{k} \geq n$.

$$
\text { so, we have: } \begin{aligned}
\sqrt{n} \cdot 2^{k} & \geq n \\
& \Longleftrightarrow \\
2^{k} & \geq \sqrt{n} \\
& \Longleftrightarrow \\
\log _{2}(\sqrt{n}) & \leq k
\end{aligned}
$$

So Loop 1 terminates when $k=\left\lceil\log _{2}(\sqrt{n})\right\rceil$.
Hence, we know Loop 1 run $k=\left\lceil\log _{2}(\sqrt{n})\right\rceil$ times, with each iteration taking constant time. Loop 2 has jiterations and constant time steps, so it has a cost of j. From the executions of the if branch, we know $j=2^{\lfloor\sqrt{n}\rfloor-1}$, which leads us to the runtime of the else branch: $2^{\lfloor\sqrt{n}\rfloor-1} \cdot \log (n)$. The if branch also executes $\lfloor\sqrt{n}\rfloor-1$ times. This concludes a total runtime of $2^{\lfloor\sqrt{n}\rfloor-1} \cdot \log (n)+\lfloor\sqrt{n}\rfloor-1$. Since \sqrt{n} is a lower order term than $2^{\sqrt{n}} \cdot \log (n)$ we have $\Theta\left(2^{\sqrt{n}} \cdot \log (n)\right)$ overall.

(c) Proof.

The initialization lines before the while loop take one step, which is constant time. At the end of the while loop two groups of events would've occurred. Either i and j increase by 1 and by a factor of 2 respectively, or i increases by a factor of 2 and loop 2 is run, costing a constant amount of operations per iteration for j iterations. The consequence of this relationship is that j can be considered to be dependent on i, i.e, we can express j as $j=2^{i}$ after $i=k$ iterations where $k \in \mathbb{N}$. We also know that the smallest change in i is 1 , so that at worst, loop 1 will run n times. Also, in each iteration, at worst 2^{k} iterations will run. Because we assume n iterations of loop 1, we can write this as:

$$
\sum_{i=0}^{n-1} 2^{i}=2^{n+1}-1
$$

Alternatively, we have:

$$
2^{n+1}-1=2^{n} \cdot 2-1
$$

Since $2^{n} \cdot 2-1 \in \mathcal{O}\left(2^{n}\right)$, we have shown what was required.

3. Rearrangements, best-case analysis

(a)
(i)
$\forall n \in \mathbb{N}, B C_{\text {func }}(n) \leq f(n)$
$\Longleftrightarrow \forall n \in \mathbb{N}$, $\min \left\{\right.$ running time of executing $\left.\left.f(x) \mid x \in I_{n}\right\}\right) \leq f(n)$
$\Longleftrightarrow \forall n \in \mathbb{N}, \exists x \in I_{n}$, running time of executing $f(x) \leq f(n)$
(ii)
$\forall n \in \mathbb{N}, B C_{\text {func }}(n) \geq f(n)$
$\Longleftrightarrow \forall n \in \mathbb{N}, \min \left\{\right.$ running time of executing $\left.\left.f(x) \mid x \in I_{n}\right\}\right) \geq f(n)$
$\Longleftrightarrow \forall n \in \mathbb{N}, \forall x \in I_{n}$, running time of executing $f(x) \geq f(n)$
(b)

Lower Bound
Let n be an arbitrary natural number and let $\operatorname{len}(l s t)=n$. In the lower bound of the best case, the stopping condition of Loop 2 and 3 is always True so Loops 2 and 3 iterate 0 times. Since Loop 2 is in the if-branch and Loop 3 is in the else-branch, either the if branch or the else branch will execute for each iteration of the for loop. For a fixed iteration of Loop 1, either line 5 or line 10 will run, and since in the best case the stopping condition of Loops 2 and 3 is True for every iteration, Loops 2 and 3 iterate 0 times. Since Loop 1 iterates $n-2$ times, from $i=2$ to $i=n-1$, and since Loops 2 and 3 iterate 0 times for a fixed iteration of Loop 1, the algorithm runs for $n-2$ iterations. Since each iteration takes a single step, we have a lower bound running time of $n-2$, which is $\Omega(n)$.

Upper Bound
Let lst be an input family where lst is a List of length n and every element of lst is the number 1. Then, it is always true that $\operatorname{lst}[j+2]=\operatorname{lst}[j]$ since $\operatorname{lst}[j+2]=1$ and $\operatorname{lst}[j]$ $=1$ for all j. Since the stopping condition of Loop 2 and Loop 3 is $j<0$ or $\operatorname{lst}[j+2] \geq$ lst[j], the stopping condition is always True, so Loop 2 and Loop 3 never execute. Loop 1 runs $n-3$ times since i goes from $i=2$ to $i=n-1$ regardless of the input list, and so Loop 1 runs for $n-2$ iterations. Since Loops 2 and 3 iterate 0 times for a fixed iteration of Loop 1, and since each iteration of Loop 1 takes a single step, we have an upper bound running time of $n-2$, which is $\mathcal{O}(n)$.

Since the runtime is $\Omega(n)$ and $\mathcal{O}(n)$, we can conclude that the runtime is $\Theta(n)$.

