Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

CSC 165 Problem Set 4

Eric Zhu, Emily Mazor, Kristin Huang
March 28, 2019

1. Printing Multiples

(a)
Proof of the upper bound (Big-oh):

We will prove that > (ﬁ € ©(nlogn)
i

. . . n n n
Using Fact 2, substituting x = —, we know, [—] < —+ 1.
i i i
Hence:

n

)EEDDCER

=1

1 n
By fact 1, we know: Y"1, — € O(logn), so > i [=] < nlogn+n.
i i
n
We can conclude: > [—] € O(nlogn)
i

Proof of the lower bound (Big-omega):

We will prove that Y | (ﬁ} € Q(nlogn).
i

o n n n
By fact 2, substituting z = —, we know, — < [—].
i i i

Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

Hence,
“.n “n
Z[ﬂ > Z 7
i=1 i=1
"1
—nY
i—1

Additionally, by fact 1, we know >, % € O(logn).

Consequently, > " | f;} >nlogn and) ., f;} € Q(nlogn)

Since we have that >, f;} € Q(nlogn) and ZLJ;} € O(nlogn), it must be
that S, [gw € O(nlogn).

(b)
The theta bound of print multiples is O(nlogn).
This is because we can write out the series of the runtime of each iteration of loop 1
n n n n
as [n] + [51 + [51 + ...+ [—11 + [—]. We deduce this from examining the runtime
n— n
of loop 2, which is dependent on d, specifically, multiple goes up by d each iteration.

For example, when d = 1 we have [n], when d = 2 we have fg], when d = 3 we have

[=], and so on. We can now recognize that series is exactly represented by >\, fﬂ

3
n
As we've proven in part a, y ., [=] € O(nlogn).
i

()

For a fixed iteration of Loop 1, Loop 3 runs for d iterations, from i =0 toi = d — 1.
Since each iteration of Loop 3 takes a single step, its total running time is d. Addition-
ally, Loop 3 only runs if d is divisible by 5, and d goes from 0 to n — 1, and d increases

n
by 1 for each iteration of Loop 1, so d%5 == 0 evaluates to True a total of LEJ times.

For every iteration of Loop 3, it has a total running time of d. Since d changes from 1
to n, and Loop 3 only runs when d%5 == 0, we know that d must be a multiple of 5.
n
We also know d increments by 5 until the if condition is satisfied || times. Hence we
can write a summation for the total number of times Loop 3 iterates.
n
=

L
n
Since d%5 == 0 evaluates to True a total of ng times, Loop 3 will iterate 22151 5

Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

n

times, so line 9 will run 21251 5 times. Rewriting the summation we have:

n

LgJ LEJ
Z 5=5 Z 1
=1 =1

We also know from part b that line 5 will run in ©(nlogn). Since nlogn is a lower order

S5, M, N
term than E((L—J) + [=]), we can conclude that a theta bound on print multiples2

5)
is ©(n?)

2. Varying running times, input families, and worst
case analysis

(a)

To see that the running time for alg is ©(2"), let n € N and consider the input family,

Ist, a List of length n where every element of /st from index 0 to index n — 2 (inclusive)
is the number 2, and the element at n — 1 is the number 1.

Hence the input family would look like this, with /st having a length of n:

Ist = [2, 2,2, ... 1]

For the first n — 2 iterations of Loop 1, the if branch executes, and each time the if
branch executes, i increases by 1 and j doubles in value. After n — 2 iterations, 1 < n
sincet=14+n—-—2=n-—1.

As j doubles in value each time the if branch executes, by the end of n — 2 itera-
tion of Loop 1, we have that j = 2"2.

Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

After n — 2 iterations, 1 = n — 1 < n, so the while loop still runs on iteration n — 1.
Now i = n — 1 so Ist[i] = Ist[n — 1] = 1. Since 1 is divisible by 1, the else branch of the
while loop runs. In the else branch, i doubles to become 2(n — 1), and Loop 2 runs.
Loop 2 runs j times, from £ = 0 to £ = j — 1, where each iteration takes constant
time. Since j = 2”72 on the n — 1’s iteration of Loop 1, Loop 2 runs 2”2 times on the
n — 1’s iteration of Loop 1, with each iteration taking a single step, so the cost for this
iteration is 272

After the else branch is executed, i becomes 2(n — 1). Given i = 2n — 2, i < n is
only true if n < 2, but since ¢ starts at 1 and the while loop only ran when i < n, where
n is an integer (length of the lst), it is impossible for n < 2. Hence i < n is False and
the while loop stops.

So in total, the Loop 1 first iterated n — 2 times executing the if branch with con-
stant cost, so it cost n — 2 for the first n — 2 iterations. Then it iterated once, executing
the else branch with a cost of 272, Adding the two together, we get (n — 2) + 2772,
which is ©(2").

(b)

To see that the running time for alg is ©(log(n)-2V™), let n € N and consider the input
family, Ist, a List of length n that consists of all 2’s from index 0 to index [/n]| — 2
(inclusive) and all 1’s from index [/n] — 1 to n — 1 (inclusive).

Hence, for the first iteration to the |\/n| — 1’s iteration, ¢ moves from 1 to |/n] —2 so
Ist[i] = 2, and since 2 is divisible by 2, the if branch will always run for these iterations.

After |\/n| — 1 iterations, i = 1+ |\/n| — 1 = |/n], and j = 2LvPI—1,

Now we move on to the index |y/n|. Since starting from this index, Ist[i] = 1, and
since 1 is not divisible by 2, the else branch will always execute. Now we try to find
how many times the else branch will execute, making k = maximum number of times
the else branch executes.

We know the while loop stops when ¢ > n, and after k-iterations, ¢ multiplies by
2k 50 i will become |y/n] - 2*. Hence we want to find k where |/n] - 2% > n.

From the definition of the floor, we know /n > [\/n], so we want to find k where

V- 2k >,

Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

so, we have: /n-2¥>n
<~

ok > /n

—

loga(v/n) < k

So Loop 1 terminates when k = [loga(1/n)].

Hence, we know Loop 1 run k = [loga(y/n)] times, with each iteration taking constant
time. Loop 2 has j iterations and constant time steps, so it has a cost of j. From the
executions of the if branch, we know j = 2v™=1 which leads us to the runtime of
the else branch: 2Lv"=1.log(n). The if branch also executes |y/n| — 1 times. This
concludes a total runtime of 2Lv™"=1.log(n)+ |\/n] — 1. Since \/n is a lower order term
than 2v™ - log(n) we have ©(2V" - log(n)) overall.

(¢) Proof.

The initialization lines before the while loop take one step, which is constant time.
At the end of the while loop two groups of events would’ve occurred. Either ¢ and j
increase by 1 and by a factor of 2 respectively, or i increases by a factor of 2 and loop
2 is run, costing a constant amount of operations per iteration for j iterations. The
consequence of this relationship is that j can be considered to be dependent on i, i.e,
we can express j as j = 2! after i = k iterations where k € N. We also know that
the smallest change in 7 is 1, so that at worst, loop 1 will run n times. Also, in each
iteration, at worst 2% iterations will run. Because we assume n iterations of loop 1, we
can write this as:

Z?:_Ol 21 — 2n+1 -1

Alternatively, we have:

2ntl —1=2".2-1

Since 2" -2 — 1 € O(2"), we have shown what was required. [

Eric Zhu, Emily Mazor, Kristin Huang Problem Set 4

3. Rearrangements, best-case analysis

(a)

(i)

Vn € N, BCyne(n) < f(n)

<= Vn € N, min{running time of executing f(x)|z € I,}) < f(n)

<= Vn € N,3Jz € [, running time of executing f(z) < f(n)

(i)

Vn € N, BCyne(n) > f(n)

<= Vn € N, min{running time of executing f(z)|z € I,}) > f(n)

<= Vn € N,Vz € [, running time of executing f(z) > f(n)
(b)

Lower Bound
Let n be an arbitrary natural number and let len(lst) = n. In the lower bound of the
best case, the stopping condition of Loop 2 and 3 is always True so Loops 2 and 3
iterate 0 times. Since Loop 2 is in the if-branch and Loop 3 is in the else-branch, either
the if branch or the else branch will execute for each iteration of the for loop. For a
fixed iteration of Loop 1, either line 5 or line 10 will run, and since in the best case the
stopping condition of Loops 2 and 3 is True for every iteration, Loops 2 and 3 iterate 0
times. Since Loop 1 iterates n — 2 times, from ¢ = 2 to ¢ = n— 1, and since Loops 2 and
3 iterate 0 times for a fixed iteration of Loop 1, the algorithm runs for n — 2 iterations.
Since each iteration takes a single step, we have a lower bound running time of n — 2,
which is Q(n).

Upper Bound
Let Ist be an input family where Ist is a List of length n and every element of Ist is the
number 1. Then, it is always true that Ist[j + 2] = Ist[j] since Ist[j + 2] = 1 and Ist][j]
= 1 for all j. Since the stopping condition of Loop 2 and Loop 3 is j < 0 or Ist[j 4+ 2] >
Ist[;], the stopping condition is always True, so Loop 2 and Loop 3 never execute. Loop
1 runs n — 3 times since ¢ goes from ¢ = 2 to © = n — 1 regardless of the input list,
and so Loop 1 runs for n — 2 iterations. Since Loops 2 and 3 iterate 0 times for a fixed
iteration of Loop 1, and since each iteration of Loop 1 takes a single step, we have an
upper bound running time of n — 2, which is O(n).

Since the runtime is 2(n) and O(n), we can conclude that the runtime is ©(n).

